links
A place where I list links to interesting, fascinating places that I like on the Internet.
blogs
ml blogs
- Chip Huyen: https://huyenchip.com/blog/
- Lilian Weng: https://lilianweng.github.io/lil-log/
- Chris Olah: https://colah.github.io
- Gwern: https://www.gwern.net
- Andrej Karpathy: https://karpathy.github.io
- David Ha (@hardmaru): http://blog.otoro.net
- Andrey Kurenkov: http://www.andreykurenkov.com/writing/
- Sebastian Ruder: http://ruder.io/
- Rich Sutton: http://www.incompleteideas.net
- Fast.ai: https://www.fast.ai
- Zachary Lipton: http://approximatelycorrect.com
- Chris Sutton: http://www.theexclusive.org
- Stephen Merity: https://smerity.com
- Joel Grus (Data Science from scratch): https://joelgrus.com
- Francis Bach: https://francisbach.com/
- Sebastian Bubech: https://blogs.princeton.edu/imabandit/
- http://hunch.net/
- http://blog.echen.me
- https://kiranvodrahalli.github.io/links/
- https://khanna.cc/blog/
cs blogs
- Steve Yegge Amazon rants: https://sites.google.com/site/steveyegge2/blog-rants
- Steve Yegge’s Blog rants: https://steve-yegge.blogspot.com
- Dan Luu - Code Recurse: https://danluu.com
- Bret Victor: http://worrydream.com/
- Adrian Coyler - The Morning Paper: https://blog.acolyer.org/
- Google’s Engineering Practices documentation
- http://www.craftinginterpreters.com
science/general
online publications
- Distill.pub
- Explained AI (Terrance Par)
- Depth First Learning
- Programmar’s perspective for Matrix Multiplication (Better Explained)
textbooks
math
- Mathematics for ML (Marc Deisenroth, UCL)
- Street fighting math (Sanjoy Mahajan)
- Seeing Theory - A visual introduction to probability and statistics (Daniel Kunin, Brown Uni)
- Immersive Math - Linear Algebra
- The Matrix Calculus You Need For Deep Learning (Jeremy Howard and Terrance Parr)
- A Beginner’s Guide to the Mathematics of Neural Networks (A.C. Coolen, King’s College)
ML/DL
- Machine Learning - A probabilistic approach (Kevin Murphy)
- The Elements of Statistical Learning (Hastie)
- Deep Learning (Ian Goodfellow)
- Dive into Deep Learning (Zachary Lipton)
- Grokking Deep Learning - From scratch with numpy (Andrew Trask)
- Mechanics of Machine Learning (Jeremy Howard and Terrance Parr)
AI
- Reinforcement Learning - An Introduction (Sutton and Barto)
- Fairness and Machine Learning (Moritz Hardt)
CS
online courses
math
ML
- Cornell CS 4780: ML for Intelligent System (Kilian Weinberger), youtube playlist
- University of Edinburgh MLPR (Iain Murray)
- fast.ai Introduction to ML for coders (Jeremy Howard)
- Machine Learning Mastery
- Rules of ML: Best practices for ML Engineering (Martin Zinkevich, Google)
DL
- fast.ai Practical DL for coders (Jeremy Howard)
- fast.ai DL from foundations (Jeremy Howard)
- Stanford CS 231n: Convolutional Neural Networks (Fei Fei Li), youtube playlist
- Full stack deep learning bootcamp (Pieter Abbeel)
- Advanced Deep Learning and RL (Thore Graepel, UCL/Deepmind), slides, youtube playlist
RL
- Spinning up in RL (openAI)
- Introduction to RL (Analytics Vidhya)
- Introduction to RL (David Silver, UCL), youtube playlist
- Implementation of RL algorithms (Denny Britz)
programming
others
- Lectures on Digital photography (Marc Levoy), youtube playlist
- Brief history of humankind (Yuval Noah Harari)
youtube channels
science
anki articles
- Augmenting Long-term Memory - Micheal Nielsen
- Super memo’s rules for formulating knowledge
- Spaced Repetition - Gwern.net
- Spaced repetition - Lesswrongwiki
- Anki Tips: What I Learned Making 10,000 Flashcards - rs.io
writing (some scientific specific)
- The day you became a better writer (Scott Adams)
- Writer’s Handbook: https://writing.wisc.edu/Handbook/
- Iain Murray - Speaking resources: http://homepages.inf.ed.ac.uk/imurray2/teaching/speaking/
- Iain Murray - Writing resources: http://homepages.inf.ed.ac.uk/imurray2/teaching/writing/
- Sharon Goldwater- Writing clear: http://homepages.inf.ed.ac.uk/sgwater/writing_advice.html
- Sharon Goldwater- Presentations: http://homepages.inf.ed.ac.uk/sgwater/presentation_advice.html
- Sharon Goldwater - Dissertation: http://homepages.inf.ed.ac.uk/sgwater/writing/ug4_report.html
- Matt - LoR: http://matt.might.net/articles/how-to-recommendation-letter/
- Matt - Apply to grad school: http://matt.might.net/articles/how-to-apply-and-get-in-to-graduate-school-in-science-mathematics-engineering-or-computer-science/
- Matt - Email: http://matt.might.net/articles/how-to-email/
- Sharon Goldwater Resources: http://homepages.inf.ed.ac.uk/sgwater/resources.html
- How to Write an Abstract: http://users.ece.cmu.edu/~koopman/essays/abstract.html
- Advice for Authors - Academically Interesting: https://jsteinhardt.wordpress.com/2017/02/28/advice-for-authors/
- Heuristics for Scientific Writing (a Machine Learning Perspective) – Approximately Correct: http://approximatelycorrect.com/2018/01/29/heuristics-technical-scientific-writing-machine-learning-perspective/
- Ten simple rules for scientists - Improving your writing productivity: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006379
- Scholars Shouldn’t Fear ‘Dumbing Down’ for the Public - The Atlantic: https://www.theatlantic.com/science/archive/2018/10/scholars-shouldnt-fear-dumbing-down-public/573979/
- How to give a technical presentation (how to give a scientific talk): https://homes.cs.washington.edu/~mernst/advice/giving-talk.html